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Abstract

Interest in solar activity has grown in the past two
decades for many reasons. Most importantly for flight
dynamics, solar activity changes the atmospheric
density, which has important implications for spacecraft
trajectoryand lifetimeprediction.Buildinguponthe

previouslydevelopedRayleigh-Benardnonlineardy-

namic solarmodel,which exhibitsmany dynamic
behaviorsobservedintheSun,thisworkintroducesnew

chaoticsolarforecastingtechniques.

Our attempt to use recently developed nonlinear chaotic
techniques to model and forecast solar activity has

uncovered highly entangled dynamics. This paper
presents numerical techniques for decoupling additive
and multiplicative white noise from deterministic

dynamics and examines falloff of the power spectra at
high fiequencies as a possible means of distinguishing
deterministic chaos f_m noise that is spectrally white or
colored. The power spectral techniques presented axe
less cumbersome than cunent methods for identifying

deterministic chaos, which requi_ more computation-
ally intensive calculations, such as those involving
Lyapunov exponents and attractor dimension.

1. Introduction

1.1 Review of Solar Activity

Need for Solar Flux Prediafon. Solar flux FIO.7[radio
flux emitted at a wavelength of k = 10.7 centime-
ters (¢m)] is the best indicator of the strength of
ionizing radiations, suchassolar ultraviolet and X-ray
emissiom, that di_ctly affect the aunospheric density
and thereby change the orbit lifetime of satellites. Thus,
accurate forecasting of solar flux FIO.7 is crucial for
spacecraft orbital determination

Sunspots and Solar Flux. The strong correlation
between sumlx>ts and the solar flux FlO.7is probably due
to the enhanced radiation from limited areas of the Sun

where sunspots are active.

The dynamics of sunspots and their formation is still a

mystery. They are often more than 1000 degrees Kelvin
cooler than the surrounding photosphere. Although
many explanations for sunspot cooling have been
proposed (e.g., the Biermann field inhibition mecha-
nism and the superadiabatic downfiow mechanism), the
huge differencein temperature betweensunspotsand

their surroundings suggests a similarity with sofitons of
multilevel unbulence. One may think of sunspots as
solitons in a fluid turbulent Sun. Orbit lifetime is a

functionof atmosphericdrag, which is a functionof
atmospheric density, which in turn is a fimction of solar
flux. For this reason, spacecraft orbit determination
requires accurate forecasting of solar flux.

Nonlinear Structure in Solar Flux. Until recently, we
had little reason to doubt that weather is in principle
predictable, given enough data. Recently, a striking
discovery changed our perspective: simple determinis-
tic systems with only a few degrees of freedom can
generate random behavior When a _Istem exhibits
apparent random behavior that is fundamental to its
dynamics, such that no amount of information gathering
will make the system pn_ctable, the system is
considered tobe chaotic.Much evidence supports our
assertion that solar flux signal falls in this category, t, 2
Perhaps paradoxically, chaosis generated by fixed roles
that do not in themselves involve any element of chance.
Theoretically, the futmm of a dynamic system is
completely determined by present and past conditions.
In practice, however, amplification of small initial
uncertainties makes a system with short-term predict-
ability unpredictable in the long term.

Many people speak of random processes as though they
were a fundamental somee of randomness. This idea is

* This wot:kwas mxpportextbytheNational A_'otmutics and Space Administraticm(NASA)/GoddardSpace Fli$htCenter(GSFC),
Greenbelt, Maryland, Contract NAS 5=31500.

( ":A c _,- L -_- I <_,")51 o ) !if T_C TI'_G A_C: N92-288"/[

.,[S_¢qrA'4_,(I'_G '47,tl_ettR STRUCTURE FRO_ SOLAR

iLb v TI"= :)_RI::I_ (Computer Sciences Corp.)
1! Uric1 ,iS

0106531



misleading. The theory of random processes is an

empirical method to deal with incomplete information:

it does not attempt to explain randomness. As far as we
know, the only truly fundamental source of randomness

is the uncertainty principle of quantum mechanics;

everything else is deterministic, at least in principle.

Nonetheless, we call many phenomena, such as solar

dynamics, random, even though we may not ordinarily

think of them in terms of quantum mechanics. Histori-
cally, scientists have assumed that randomness derives

solely from complication. In this paper, we will take the

practical position that randomness occurs to the extent

that a system's behavior is unpredictable. We believe

that randomness is subjective and a matter of degree;

that is, some systems are more predictable than others

(e.g., solar activity is more predictable than geomagnet-

ic activity).

Solar Activity Prediction. Interest in solar activity has

grown in the past two decade_ for many reasons. Some

reports claim a correlation between solar activity and

weather on Earth, although a correlation has not yet

been convincingly established. We have some evidence
for the coincident occunences of the Maunder mini-

mum (a period of little or no solar activity occurring
from 1645 to 1715) and the "Little Ice Age" (a period of

abnormally cold weather). Perhaps most importandy for
flight dynamic, solar activity changes the atmospheric
density, which has important implications for spacecraft

trajectory and lifetime prediction. 3 The seemingly

random natu_ of solar flux has misled us for many

decades, causing us to assume that the underlying

physics must necessarily be complex as well. Therefore,

researchers have generally used statistical models to

predict solar activity. 4 However, new developments in

chaos and nonlinear dynamics allow us to model the
behavior of a system in terms of some invariants directly

extractable from system dynamics, without reference to

any underlying physics. Using chaos theory, we can

predict short-term activity more accurately than with
statistical methods; however, chaos theory imposes a

fundamental limit on long-term predictions.

1.2 Brief Review of Nonlinear

Dynamics

Self-Organization and Attractors. Imagine a very

simple system: a pendulum. The pendulum exhibits two
fundamental deg_es of fieedom: position and momen-

tum. However, in its stable per/odicstate (limit cycle),

the pendalum can be described by only one degree of

freedom, the phase angle. Here, the dynamic is attracted

to a lower-dimensional phase space, and the dimension

of this reduced phase space is equal to the number of

active degrees of freedom in the self-organized system.

Attractors are not limited to zero dimension (fixed

point) or one dimension (limit cycle), but for nonlinear

systems they could be high dimensional and in some
cases even fractional or fractal (strange attractors).

Phase.Space Construction Directly From a Time

Series. When confronted with a complicated physical

system, an experimenter normally measures at regular
and discrete intervals of I£-ne the value of some state

variable (e.g., flux Fio.7) and records the maae series

f(to), f(tl), f(t2) ..... with f(ti) E R and ti = to + hat. From

the observed time series, the experimenter attempts to

infer something about the dynamics (i.e., the physics) of

the s#tem.

From time-delayed values of the scalar time series,
Packard et al. 5 have shown that one can embed the time

series into a higher dimensional space. Vectors are

created with components as

f'(t)-- [f(t),f(t- x), ...f(t - (m- I_)]T,

where _ (timedelay)and m (theembedding dimension)

are parameters of the embedding procedure.

An embedding dimension of m > 213+1, where D is the

fractal dimension of the attractor, almost always ensures

the construction of the topology of the attractor (Takens'

theorem).

If unlimited infinitely precise data are available, almost

any delay time _ and embedding dimension m > D will

work, at least in principle. However, choosing the

optimalparameters for real data is a nontzivialprocess.

For example, if x is too large, then the components f(t)
and f(t + (m - 1)_) of the reconstructed vector will be

effectively uncorrelated, which will inflate the esti-

mated dimension. On the other hand, if (m - 1)x is too

small, then the components f(t) ..... fit + (m - 1)z) will

all be very nearly equal, and the reconstructed attractor

will look like one long diagonal line. Generally, _ must
not be less than some characteristic decorrelation time,

and (m-1)_ must not be much greater thaa this
decorrelation time. One such characteristic time is the

local minima of the autocorrelation function

Largest Lyapunov Exponent of Solar Flux Time

Series. The sum of the Lyapunov exponents is the

time-averaged divergence of the phase-space trajectory;

hence, any dissipative dynamical system will have at

least one negative exponent.

A small positive Lyapunov exponent is an indication of

chaos, and a very large positive Lyapunov exponent is
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an indication of a totally stochastic or random system.

Therefore, the sign of the exponent provides a qualita-

tive picture of a system's dynamics--a positive expo-

nent represents chaos, a zero exponent represents
marginally stable systems, and a negative exponent

represents periodic systems. The largest Lyapunov
exponent for solar activity is about 0.01. Z 5 There, we

have used the well-known technique of phase-space

reconstruction with delay coordinates. 6

Toward Forecasting Solar Flux Directly From Its

Time Series. After embedding the solar flux time series

in a state space using the Takens-Packard delay

coordinate technique, one can "learn" the induced

nonlinear mapping using a local approximation This

will allow us to make short-term forecasting of the

future behavior of our time series using information

based only on past values. The error esl_nate of such a

technique has already been developed by Farmer and
Sidorowich7:

E = Ce (m+l)g'r N -(m+l)/D,

where E: normalized error of prediction (0 < E

_< 1, where zero is perfect prediction,

and one is a prediction no better than

average)

m: order of local approximation

K: Koimogorov entropy

T: forecasting window

N: number of data points

D: dimension of the attractor

C: normalizationconstant.

Using the Farmer-Sidorowich relation, we can find the

prediction horizon T for the zeroth order of local
approximation Any prediction above Tm,x is no better

than average constant prediction:

E(T=_) = I.

Thus, for m = 0, K is the largest Lyapunov exponent 7L
Therefore,

e rr=_ N -l/D - 1 or T=_
1.0,0

KD '

h (N)
T_,_ LD

Any prediction beyond the indicated horizons is no

better than average value. The connection between the

local and the global Lyapunov exponents has recently

been found by Abrabanel and Kennel (March 1991) in a

form of power law as

x0)=Xo+iS,

N = col,

where _(1) = local Lyapunov exponent

1 = length of observed data (observa-

tion window)

v = a constant dependent to the dynam-
ical system (0.5 <- v < 1.0)

c = a constant dependent to initial

conditions of the system

XG = well-known global Lyapunov ex-

ponent

co = frequencyofdatapoints.

Because all data are of finite length, using the

Abrabanel-Kemael power law and Farmer-Sidorowich
relation, we can find Tmax as

h_(ko)

TI_ means that as 1 incTeases linearly, Tm_ increase._

logarithmically to a certain asymptotic T because of the
denominator cfl v.

Therefore, our relation shows that at the asymptote
Tmax = TO and dTmax/dl = 0. 7 Thus, we can _ what

observation window is required for forecasting up to

Tm,x within some confidence level:

xo(b)
dTm._ ---,0, thus No - e-;- xo(5) > 2,
dN

where xo (5)isthesolutiontoe-x (x- I)= 8,and where

CO} v

is the sealed global Lyaptmov e:g_onent.

This result shows that any observation window greater

than lo = No/co will not improve our prediction horizon

To; so more data beyond this limit are not needed to

understand a dynamical system. This conclusion is

indeed consistent with weather prediction and also with

empirical results concluded from neural netwod_

waining.



1.3 Analysis of High-Frequency
Power Spectra of a Time Series

Figure 1 shows daily solar flux FLU.7 for four solar

cycles of about 11.5 years (from February 1947 to

November 1991). From the graph, it is clear that some

long-term features show a higher degree of order than
some short-term features. For example, 11.5-year solar

cycles are less stochastic than daily variations. There-

fore, it seems that one may be able to simulate solar

dynamics using only a few degrees of freedom.

It is also clear from Figure 1 that variation of daily

activity for solar cycle maxima is greater than for solar

cycle minima. The flux on the maxima varies by as
much as 150 solar flux traits, whereas on the _athe

flux varies by no more than 25 units. To simulate this

phenomenon, we require a long-term variation XL(0, a
medium-term variation XM(t), and a short-term varia-

tion Xs(0. We therefore assert that solar activity may be

simulated with three degrees of freedom. In this paper,

we attempt to elucidate the inherent structure in these
different time scales and to show that, from the falloff of

the power spectra of each of these variations at high

frequencies, one can deduce whether the signal is

chaotic. The power spectral techniques presented axe
less cumbersome than current methods for identifying

deterministic chaos, which requixe more computation-

ally intensive calculations, such as those involving

Lyapunov exponents and attractor dimension.

Historically, random behavior in systems has been

studied as an effect of noise, (e.g., Brownian motion).

With the emergence of chaos theory, we began to
understand that random behavior can occur intrinsically

in deterministic systems even if the number of degrees
of freedom is small Recognizing these two sources of

random behavior, it is obviously crucial that we be able

to determine which is the cause in a given case. That is,
we must know whether the observed random behavior

can be described by a small number of deterministic

equations or is more accurately modeled by a stochastic

process. We attempt to provide a partial answer to this

fundamental question.

With our current understanding of chaotic dynamics, we
can calculate the fractal Hansdorff dimension of

attractors, determine the positive Lyap_ exponents,

and thereby distinguish deterministicchaos from

stochasticity. These methods, however, involve many
well-known technical difficulties when applied to time
series data. 7 What is needed is a tool that allows us to

distinguishbetween determin/sticand stochasticran-

dom behaviorwithoutfirstcalculatingLyapunov expo-

nents, dimensions, and entropies. We attempt to show

that the falloff of the power spectra at high frequencies
and Hilbert transform of our data can furnish such a tool.

Our results indicate that systems that can be described

by deterministic chaos with a few degrees of freedom

should have power spectra that fail off exponentially
and that the stochastic system should decay via a power

law.

Consider fit), a time series that is either stochastic or

chaotic. Let F(to) = • [f(t)] be a Fourier transform of

f(t). If fit) is differentiable with respect to time, the

Fourier transform of df]dt is: to F(to). Thus, if F(to)

exists, F(_) must fall off faster than 0_ -1 as to --,. m, so

that the inverse transform of ko F(to) will exisL Now,

the power spectrum of fit), St(to), is, roughly, Sp(co)

_t IF(_°) 12. It follows that if fit) is once differentiable,

Sf(_o) must fall off faster than to-2. Similarly, if the nth
derivative of f(t) exists, then Sf(co) falls off faster than

6o-2n. For model systems like the Lorenz model, one

may expect the power spectra of a dynamical system to

fall off faster than any power of co-t.

2. Data Analysis

Using interpolation and decimation one can decouple
solar flux time series to three (the dimension of

embedding space) variables, all functions of time.
These three variables are XL(t), long-termbehavior;,

XM(t), medium-term behavior, and Xs(t), short-term
behavior.

Increasing the Sample Rate of Data. First, we expand

the input time series in length by insertingzeros

between _ originaldata values.Second,we designa

special symmetric finite-duration impulse response

(FIR) filter that allows the original data to pass through
unchanged and interpolatesbetween data points to

minimize the mean-square errors between the interpo-

lated points and their ideal values. Hnally, we apply the
filter to the input vector to produce the interpolated

output vector.

This technique, the opposite of decimation, can

the sample rate of signal data.

Decreasing the Sample Rate of Data. Decimation, the

opposite of interpolation, can decrease the sample rate

of signal data. Vtrst, we low-pass filter the input time

series, and the resulting smoothed signal is resampled at
a lower rate. Second, we filter the input time series using

an eighth-order low-pass Cbebyshev type I filter in both
the forward and reverse directions to remove all phase

distortion, which effectively doubles the filter order

Orders above 13 produce numerical imtability. Third,
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we take the normalized cutoff frequency for the

low-pass filter to be 0.8/r (r is the sample rote), with

0.05 decibels of ripple in the passband.

FinaUy, we resample the filtered data with low sampling

rate.

3. Numerical Techniques For
Forecasting Solar Activity

Once we know the state space representation, the next

goal is to fit a model to the data. There are several

methods. The simplest method is to assume that the

dynamics can be written as a map in the form

L+, =M(_),

where the current state is fn, and fn+l is a future state.

Methods such as the polynomial method, rational

approximation, radial basis functions, neural netwodcs,

and local approximations have been proven successful.

Here we only introduce local approximation technique,
which is the method used to structure the computer

program.

LocalApproximation. The basic idea is to break up the
domain of M into local neighborhoods and fit different

parameters into each neighborhood. This fit is generally
better than global approximation, especially for large

data sets. Most global representations reach a IX_t of

dimini.cahing returns, where adding more parameters or
data gives only an incremental improvement in accura-

cy. ARer a certain point, adding more local neighbor-

hoods is usually more efficient than adding-more

parameters and going to higher order. Wxth local
approximation, it is possible to use a given ftmctional

representation efficiently. The key is to choose the local

neighborhood size conectly, so that each neighborhood

has just enough points m make the local parameter fits
stable.

An example of local approximation is first order, or

nearest neighbor, approximation. Look through the data

set for nearest neighbor, and predict the cunent state

based on what the neighbor did at time T late_ We

approximate f(t + T) by f(t, T) = fit' + T), where

f(t'), is the nearest neighbor of f(t). That is, to predict
tomorrow's solar flux, we would search the historical

record and find the solar flux pattern most similar m that

of today, and predict that tomorrow's solar flux pattern

will be the same as the neighboring pattern 1 day latex:

Rrst order aptnoaSmation can sometimes be improved

by finding more neighbors and merging their

predictions, for example, by weighting according to
distance from the cttrrent state.

Implementation of Local Approximation. Finding

neighbors in a multidimensional data set is time

consuming when considering many points. A straight-

forward method is to compute the distance to each point,

which takes approximately N steps for N points. This

can be reduced to roughly log N steps by organizing the
data with a decision tree, such as a k - d tree. 8

In this method, the data set is partitioned one coordinate
at a time. We can take the coordinate with largest range

and partition it at its median value. These values are
stored in the tree as keys. It is now possible to eliminate

many points from consideration when looking for the

nearest neighbors. This way, we minimize processing

time considerably.

3.1 Using Three Degrees of Freedom
to Describe and Forecast Solar

Flux

As described in Section 1.3, we can decouple solar flux

time series to a long-term behavior, XL, a medium-term

behavior, XM, and a short-term behavior, Xs. Figure 4

shows the long-term behavior, and Figure I shows the
combined medium-term and short-term behaviors. The

combined behavior looks like a modulated signal (two

signals multiplied to one another). Going through some

logarithmic decomposition techniques and filtering,

one can get the individual medium-term aad short-term
behaviom shown in Figures 7 and 10, respectively.

Figures 2, 5, 8, and 11 show the I-Iilbert transform of

solar activity for Figures 1, 4, 7, and 10, respectively.
This transformation returns a complex sequence; it has a

real part (horizontal axis), which is simply the original
data, and an imaginary part (vertical axis), which

contains the I-filbert transform. The imaginary part is a

version of the original teal sequence with a 90 ° phase
shill The Hilbert transformed series has the same

amplitude and frequency content as the original real

data and includes phase information dependent on the

phase of the original data. Figures 3, 6, 9, and 12 show
the power spectral density with 95 percent confidence

estimation for Figures 1,4, 7, and 10, respectively. From
the form of these decays (in frequency) it is clear that

one can distinguish whether the data are stochastic (o - _

decay) or chaotic (e -" decay).

From Figures 5 and 8 it is clear that XL and XM follow

very distinct trajectories, whereas Xs in Figure 11 is

truly stocha_c with no distinct trajectory. Therefore,

using three degrees of freedom, one can forecast solar

activity using chaotic dynamics better than using
stochastic methods.
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Fig. I. Daily Solar Flux, Its Envelope, and Their Difference

Figures 13 and 14 show predictions using local approxi-

marion technique. Figure 15 shows the difference in

predictions for embedding dimension D = 3 at different
time shifts.

4. Conclusion

In this paper, we have introduced nonlinear techniques
to model and forecast solar activity. Signal analysis

suggested that although solar flux exhibits highly

entangled dynamics, one can use chaos ttg_ry to
forecast the activity using only a few degrees of

freedom.

In view of the difficulty in identifying a stochastic signal
from a chaotic one, we also introduced falloff of power

spectra at high fiequencies as a possible means of

distinguishing deterministic chaos from noise that is

spectrally white or colored. This power spectral tech-

nique is less cumbersome than current methods for

identifying deterministic chaos which require more

computadonally intensive calculations, such as those
involving Lyapnnov exponents and attractor dimension
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